If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+4x-9=0
a = 8; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·8·(-9)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{19}}{2*8}=\frac{-4-4\sqrt{19}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{19}}{2*8}=\frac{-4+4\sqrt{19}}{16} $
| 9k-6=5k+18 | | 1/2x-8.5=4 | | d=-5d^2+10d+120 | | 4(9+7x)=120 | | 4n+3n+8=92 | | -2=11-x÷3 | | F(x)=5^x-4+10 | | X2+18x+74=0 | | -5(5x+3)=-165 | | u/5=-54 | | 3(8+5m)=7(m+8) | | (3x+6)+(7x-18)=90 | | 1,7*10^(9)*(0.3-2x)^(2)*((10^(-12)/x)-x)-x=0 | | 4+25=4(9x-7) | | 2.4n+120=133.2 | | H(d)=-5d^2+10d+120 | | 2x³+x²=0 | | 4+25=4(9x-7 | | 0.17y+0.05(y+8000)=1500 | | 1,7*10^9(0.3-2x)^2(10^(-12)/x-x)-x=0 | | 2.35x=x+29357 | | 9=y/2+2 | | (x-4)=2(-2x+1) | | (3x-6)(3-4x)=0 | | Y2+13y-48=0 | | 6(n+5)=-2(5-5n) | | -6x^2+8x+17=5 | | −6x^2+8x+17=5 | | (8-2x-1)²=4x²+9-12x | | -1/4m+5=16 | | 2n=124+7n-19 | | Y=x-3/2 |